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Spectrum and symbol distribution of nucleotide sequences

Vera Afreixo, Paulo J. S. G. Ferreifaand Dorabella Santos
Departamento de Electronica e Telecomunicagdes/IEETA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
(Received 26 March 2004; published 23 September 004

This paper explores the connection between the size of the spectral coefficients of a nucleotide or any other
symbolic sequence and the distribution of nucleotides along certain subsequences. It explains the connection
between the nucleotide distribution and the size of the spectral coefficients, and gives a necessary and sufficient
condition for a coefficient to have a prescribed magnitude. Furthermore, it gives a fast algorithm for computing
the value of a given spectral coefficient of a nucleotide sequence, discussing periods 3 and 4 as examples.
Finally, it shows that the spectrum of a symbolic sequence is redundant, in the sense that there exists a linear
recursion that determines the values of all the coefficients from those of a subset.
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I INTRODUCTION S(K) = (1002 + 1K) 2 + 1K)+ 1K) |2, (1)
Consider a symbolic sequensevith elements wherel,, I, I, andl, are the discrete Fourier transforms

5(0),5(1) S(N-1) (DFTy of the indicator sequences, that is,

N-1
where each symbd(i) belongs to a finite alphabdt. Al- Lk =S (j)ei2mikiN )
though the results described in the paper apply for other fi- a i=0 a

nite alphabets, we will limit ourselves to the cade o ) ) )
={A,C,G,T}. This is of course motivated by DNA se- (thei in the exponent denotes the imaginary unit

quences, which consist of adenit®, cytosine(C), guanine The purpose of this paper is to clarify the connection be-
(G), and thymine(T). tween the distribution of the nucleotides in the sequence, at

ertain positions, and the size of the spectral coefficients
and revealing structureshort and long range correlations, k). Contributions toward this goal have been made before

periodicities, and so grin DNA sequences. The availability [7]: Put our results differ from those in several aspects. We
of DNA data, their volume, and the interest of the applica-91V& & much simpler way of obtaining necessary and suffi-

tions are some of the metivations to consider the problem‘?iem conditions for a specific spectral coefficient to have a

For a review of(spectral and othgmethods, sequence mod- Prescribed magnitude, not necessarily zero. The method also
eling, and some related biological issues, Edeand refer- leads to insight regarding what makes the spectral coeffi-

ences therein. Among other thing4] discusses strand sym- cients large. We_ give a very fast algorithm f_or co.mputing a
metries, the power-law ¥# decay of the spectrum, whete selected coefficienB(k), such asS(N/3). This is of interest

is close to unity, and the similarity between the base correSince the size o8(N/3) is important to distinguish coding
lations (A and T, as well asG andC). regions fro_m noncoding ones. Finally, we find that the spec-
Fourier analysis is one of the natural tools to use, but thdral coefficients are redundadinearly dependent For ex-
symbolic nature of the data poses a challenge: there is n@MPle, if there ar@ symbolsA in a sequence of total length
underlying algebraic structurésuch as group structure N. then theN elements ofi, can be determined from any
However, this problem can be circumvented in several wayscontiguous subset of cardinalthrough a linear recursion.
One of the most common approaches depends on the indica-

There is a great deal of interest in methods for detectin

tor sequences dd, that is, numerigbinary) sequences that Il RESULTS
express the position of each symbol alaag-or example, It follows from Eq. (2) that1,(0) is the total number of
the indicator sequence for the symiolwith respect to the  occurrences of the symbdl in the sequence. Alsd,(N/2)
symbolic sequence is is the difference between the number of ocurrences at even
1, sj)=A positions and at odd positions. This suggests a study of the
G)=1" - relations between the size of a spectral coefficient such as
0 otherwise. I,(N/n) and the distribution of the corresponding symbol in

n evenly spaced subsequences. Assume therefore Nhat

The Fourier spectrum of the sequersds defined in terms of .
=nm, and consider

the four individual spectra of the indicator sequenfsf).

More precisely, theN Fourier coefficientsS(k) (O<k<N) n-1
e Ya(v) = 2 igum+v) (0<ov <m).
u=0

In words, split the original sequence of lendthinto n se-
*Electronic address: pjf@det.ua.pt quences of lengtim, and then add them together to obtain a

1539-3755/2004/13)/03191@4)/$22.50 70031910-1 ©2004 The American Physical Society



AFREIXO, FERREIRA, AND SANTOS

lengthm sequence. Note that(v) represents the number of
occurrences of the symbél at then locations

v,o+tmuou+2m, ... v+(n-1)m.

For this reason we call,, and the sequenceg, y,, andy;

that are similarly defined, symbol counts. The next step is t?Ya(1)|2

evaluate the DFT of the lengtin symbol county,:

m-1
Ya(k) = 2 ya(j)e_izwjk/m

i=0
m-1n-1

=3 3 iy(ume ez
j=0 u=0
m-1n-1

- 2 E ia(um+ j)e—iZW(UWj)k/m
j=0 u=0
N-1

= 2 ia(p)ertmHm
p=0
N-1

- E ia(p)e—iZTrpnldN
p=0

=1,(nk).

The idea of reducing the computation of a lengilEmn
DFT to the computation of a block sum and a lengt®DFT
is due to[8]. It was rediscovered b}9] (see alsd10]).

The following theorem, which links the lengtk DFT S
and the DFTs of the symbol countg, Y., Y, andy; (of
lengthN/n) can now be easily shown.

Theorem 1Let N=nm Consider any fixed integéy; sat-
isfying 0O<k<m. The spectral coefficierfi(nk) is given by

S(nK) = [Ya(K) 2+ YW+ VoW + V(K2 (3)

and as a result it vanishes if and only¥if(k), Y¢(k), Y4(k),
andY,(k) all vanish.

For the proof, note that Eq3) follows immediately from
Eq. (1) and the transformation described above.

The computation ofS(nk) is much more efficient when
done via the symbol coun{gnd DFTs of lengthiN/n) than
when done directlywith a DFT of lengthN).

The special casBl=3n turns out to be particularly inter-
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S(N/3) = |Ya(1)|2 + |Yc(1)‘2 + |Yg(1)|2 + |Yt(1)|2- (6)
But
Ya(1) =y,(0) +y,(Dw + ya(Z)Wz,

wherew=e273_ An elementary computation confirms that
is F(y,). The three remaining cases are of course
similar, and the result follows.

Theorem 3Let N=3n. The spectral coefficiers(N/3) is
a symmetric function of the symbol counts.

To simplify the notation, letx=y,(0), y=y,(1), and z
=y,(2). Note thatF(y,) =x?+y?+ 72— xy-xz-yz and that this
is invariant under permutations of the y, andz. The re-
maining three cases are identical, and the theorem follows.

The number of arithmetic operations needed to evaluate
Eqg. (4) is O(1), that is, independent df. The computation
of the symbol counts can be done as the data are read, as it
merely requires incrementing the appropriate counters. The
overall result is a computational procedure tha®iN), but
dominated by the time needed to read the data. Recall that
the computation of a fast Fourier transform of lenbtls an
O(N log N) process, and that the computation of one spectral
coefficient require©(N) arithmetic operations.

Still in reference to the special cadé=3n, note that it
easily yields a necessary and sufficient condition for the van-
ishing of S(N/3), contained in[7]. The following terminol-
ogy is convenient: a symbol count, suchygsis equidistrib-
utedwhen all they,(i) are equal.

Theorem 4Let N=3n. The spectral coefficier8(N/3) is
zero if and only if the symbol countg,, y., yg andy; are
equidistributed.

The simplest proof follows from Ed4). Its four terms are
similar to Eq. (5), which vanishes if and only ify,(1)
=Ya(2) and y,(0)=[ya(1)+Yya(2)]/2, that is, ya(0)=y,(1)
=Ya(2).

Alternatively, we see from Eq6) that SIN/3)=0 if and
only if the DFTs of the symbol counts vanish fe=1. But

Ya(1) =y,(0) +y(Hw + ya(Z)Wz,

wherew=¢e7?73, Equidistribution impliesY,(1)=0, since 1
+w+w?=0, becausav®=1. Conversely, assume thi(1)
=0. An elementary computation shows thga(0)=y,(1)
=y4(2), as required. The remaining three DFTs can be
handled in a similar way.

esting in connection with DNA sequences. It leads to a very The first part of this argument generalizes easilyrfonot

fast algorithm for computing(N/3).
Theorem 2Let N=3n. The spectral coefficier(N/3) is
given by

SN =Fly) +Fyo +Fp) +Fy), (@
where
(D +y.(2) |2 3
Fya =] a0 - I By )y o 9

andF(y.), F(yy), andF(y, are similarly defined.
To see that this is true, s&=1 andn=N/3 in Eq. (3).
This leads to

necessarily equal to 3, since t#w?+---+w™1=0 for
wm=1. We thus see that the equidistribution of thesymbol
counts implies the vanishing of the spectral coefficient
S(N/m).

The method used also characterizes the nucleotide distri-
butions that lead to a coefficie®N/3) of a given sizgnot
necessarily zeno SinceS(N/3) is given in Eq.(1), we will
look at the componerijt,(k)|? only.

Theorem 5 Identify the symbol county,(0), y,(1), and
V.(2) with three orthogonal axeg, y, z. Geometrically,
1a(N/3)]2=v for some fixedv if and only if x, y, andz lie on
a cylinder with axisx=y=z and radius?=2y/3.

For the proof, rewrité=(y,) as

031910-2



SPECTRUM AND SYMBOL DISTRIBUTION OF.. PHYSICAL REVIEW E 70, 031910(2004)

1 ) ) ) Theorem 8Let i, be an indicator sequence of lendth
F(x,y,2) = 5[(X—Y) +(y-2°+(x-27], with n ones, located dtig,j1., ... .jn1}. TheN spectral coef-
ficientsl, given by Eq.(2) satisfy the recursion
or, in matrix form,

n-1
1 -1/2 -1/2||x L(€+n) == hl,(£+K),
Fxy,2=[xyd|-1/2 1 -1/2||y]|. k=0

-vz2 -yz2 1 ||z where theh, are the coefficients of the polynomial

Upon reducing the quadratic form to diagonal form in the
new variablesX, Y, andZ, we get "
P(2) = 2 h,
g(X2+Y2):v, ko
determined byh,=1 and

a circular cylinder with radius2v/3. An elementary com-
putation shows that the axis is indeed the liwey=z, com- P(e?/N) =0 (0=< p<n).
pleting the proof.

The following case is also of interest, and is also an easy
consequence of E@3) and Theorem 1.

Theorem 6Let N=4n. The spectral coefficier(N/4) is
given by

S(N/4) = F(ya) + F(ye) + F(yg) + F(yy,

For the proof, consider the equations
n
P(e—iZﬂ'jplN) — E hke—iZijklN =0 (0 <p< n) ]
k=0

Multiplication of each of them by
where
i (] )e—i27-rjp€/N,
F(Ya) = [Ya(0) — Ya(2) 1+ [ya(1) - ya(3)T, alp
andF(y,), F(y,), andF(y,) are similarly defined. followed_ by summe}tion ovep and an interchange of the
For the proof, sek=1 andn=N/4 in Eq.(3), and evaluate Summation order, yields
the squared modulus of the length 4 DFTSs.

Theorem 7Let N=4n. The spectral coefficier(N/4) is " ”_l. o n " N_ll B .
zero if and only if the symbol counts satisfy(0) =y,(2) and %hk% Ia(jp) 2mp N = go hk% ia(p)ert 2P,
Ya(1) =y,(3), and similarly foryc, y,, andy;. - -

The proof is obvious when we considefy,)=0, say. Combination of this with Eq(2) shows that

In [7], the caseS(N/4)=0, with y,(0)=y,(2) #y.(1)
=y.(3), is called a “hidden periodicity” of period @hidden” n
since it cannot be detected by spectral ana)y§ie note that > hl,(€+k =0,
this is in fact a periodicity of period 2. Recall thgtN/2) is k=0

the difference between the total number of occurrences of ) i
at the even and at the odd locations. In terms of the symb@nd sinceh,=1 we finally get the result.

counts forN=4n, this means that Note that, in general, anM arbitrarily prescribed real or
complex numbers are the spectral coefficients of a certain
1a(N/2) = [ya(0) + Ya(2)] = [ya(1) + Ya(3)]. time series. Theorem 8 shows that this is not the case with

the spectral coefficients of a symbolic sequencd dppears
n times out ofN, then onlyn contiguous spectral coefficients

+Ya(2) andy,(1)+y,(3) will be different, andl (N/2)+# 0. L ; L
Beware that the statistical significance of the magnitude of §2n be arbitrarily prgscrlt?ed. The remainiNg n are deter-
mined by the recursion given.

given harmonic should be judged against that in a random
sequence, and that the periodicities should in general be

But since by hypothesi$,(N/4)=0, the quantitiesy,(0)

identified not with a single harmonic, but with the sum of the ll. CONCLUSION
magnitudes of sets of equidistant harmor{it|.
We now show that thé\ spectral coefficients of a sym- We have clarified the connection between the size of the

bolic sequence are redundatimearly dependent More pre-  spectral coefficient§S(k) and the distribution of the nucle-
cisely, if there aren symbolsA in a sequence of total length otides in certain equispaced subsequences. We gave a much
N, then theN elements ofl, can be determined from any simpler way of obtaining necessary and sufficient conditions
contiguous subset of cardinal through a linear recursion. for a specific spectral coefficient to have a prescribed size
Similar assertions are valid for the three other symbols, bu¢including zer9, using a block sum transformation. The
we consider the indicator sequenigeand its DFTI, only, = method also leads to insight regarding what makes the spec-
since the remaining three indicators can be handled in th&al coefficients large. We gave a computational procedure
same way. for computing a selected coefficie®tk), such asS(N/3),
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which has been used to tell coding regions from noncodindor example, to check for and even to correct errors in the
ones. Finally, we showed that the spectral coefficients ardata corresponding to a given indicator sequeicg.

linearly dependent and therefore redundant: If thererare
symbols in a sequence of total lendththen theN elements

of I, can be determined from, saly(0),15(1), ... la(n=1), The present work was supported by the FCT, Grant Nos.
through a linear recursion. This dependence could be usethOCTI/BME/39030/2001 and POSI/CPS/38057/2001.
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