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This paper explores the connection between the size of the spectral coefficients of a nucleotide or any other
symbolic sequence and the distribution of nucleotides along certain subsequences. It explains the connection
between the nucleotide distribution and the size of the spectral coefficients, and gives a necessary and sufficient
condition for a coefficient to have a prescribed magnitude. Furthermore, it gives a fast algorithm for computing
the value of a given spectral coefficient of a nucleotide sequence, discussing periods 3 and 4 as examples.
Finally, it shows that the spectrum of a symbolic sequence is redundant, in the sense that there exists a linear
recursion that determines the values of all the coefficients from those of a subset.
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I. INTRODUCTION

Consider a symbolic sequences with elements

ss0d,ss1d, . . . ,ssN − 1d,

where each symbolssid belongs to a finite alphabetG. Al-
though the results described in the paper apply for other fi-
nite alphabets, we will limit ourselves to the caseG
=hA,C,G,Tj. This is of course motivated by DNA se-
quences, which consist of adeninesAd, cytosinesCd, guanine
sGd, and thyminesTd.

There is a great deal of interest in methods for detecting
and revealing structure(short and long range correlations,
periodicities, and so on) in DNA sequences. The availability
of DNA data, their volume, and the interest of the applica-
tions are some of the motivations to consider the problem.
For a review of(spectral and other) methods, sequence mod-
eling, and some related biological issues, see[1] and refer-
ences therein. Among other things,[1] discusses strand sym-
metries, the power-law 1/fa decay of the spectrum, wherea
is close to unity, and the similarity between the base corre-
lations (A andT, as well asG andC).

Fourier analysis is one of the natural tools to use, but the
symbolic nature of the data poses a challenge: there is no
underlying algebraic structure(such as group structure).
However, this problem can be circumvented in several ways.
One of the most common approaches depends on the indica-
tor sequences ofs, that is, numeric(binary) sequences that
express the position of each symbol alongs. For example,
the indicator sequence for the symbolA with respect to the
symbolic sequences is

ias jd = H1, ss jd = A,

0 otherwise.
J

The Fourier spectrum of the sequences is defined in terms of
the four individual spectra of the indicator sequences[2–6].
More precisely, theN Fourier coefficientsSskd s0øk,Nd
are

Sskd = uIaskdu2 + uIcskdu2 + uIgskdu2 + uI tskdu2, s1d

where Ia, Ic, Ig, and I t are the discrete Fourier transforms
(DFTs) of the indicator sequences, that is,

Iaskd = o
j=0

N−1

ias jde−i2p jk/N s2d

(the i in the exponent denotes the imaginary unit).
The purpose of this paper is to clarify the connection be-

tween the distribution of the nucleotides in the sequence, at
certain positions, and the size of the spectral coefficients
Sskd. Contributions toward this goal have been made before
[7], but our results differ from those in several aspects. We
give a much simpler way of obtaining necessary and suffi-
cient conditions for a specific spectral coefficient to have a
prescribed magnitude, not necessarily zero. The method also
leads to insight regarding what makes the spectral coeffi-
cients large. We give a very fast algorithm for computing a
selected coefficientSskd, such asSsN/3d. This is of interest
since the size ofSsN/3d is important to distinguish coding
regions from noncoding ones. Finally, we find that the spec-
tral coefficients are redundant(linearly dependent). For ex-
ample, if there aren symbolsA in a sequence of total length
N, then theN elements ofIa can be determined from any
contiguous subset of cardinaln through a linear recursion.

II. RESULTS

It follows from Eq. (2) that Ias0d is the total number of
occurrences of the symbolA in the sequence. Also,IasN/2d
is the difference between the number of ocurrences at even
positions and at odd positions. This suggests a study of the
relations between the size of a spectral coefficient such as
IasN/nd and the distribution of the corresponding symbol in
n evenly spaced subsequences. Assume therefore thatN
=nm, and consider

yasvd = o
u=0

n−1

iasum+ vd s0 ø v , md.

In words, split the original sequence of lengthN into n se-
quences of lengthm, and then add them together to obtain a*Electronic address: pjf@det.ua.pt
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lengthm sequence. Note thatyasvd represents the number of
occurrences of the symbolA at then locations

v,v + m,v + 2m, . . . ,v + sn − 1dm.

For this reason we callya, and the sequencesyc, yg, andyt
that are similarly defined, symbol counts. The next step is to
evaluate the DFT of the lengthm symbol countya:

Yaskd = o
j=0

m−1

yas jde−i2p jk/m

= o
j=0

m−1

o
u=0

n−1

iasum+ jde−i2p jk/m

= o
j=0

m−1

o
u=0

n−1

iasum+ jde−i2psum+jdk/m

= o
p=0

N−1

iaspde−i2ppk/m

= o
p=0

N−1

iaspde−i2ppnk/N

= Iasnkd.

The idea of reducing the computation of a lengthN=mn
DFT to the computation of a block sum and a lengthm DFT
is due to[8]. It was rediscovered by[9] (see also[10]).

The following theorem, which links the lengthN DFT S
and the DFTs of the symbol countsya, yc, yg, and yt (of
lengthN/n) can now be easily shown.

Theorem 1. Let N=nm. Consider any fixed integerk, sat-
isfying 0øk,m. The spectral coefficientSsnkd is given by

Ssnkd = uYaskdu2 + uYcskdu2 + uYgskdu2 + uYtskdu2, s3d

and as a result it vanishes if and only ifYaskd, Ycskd, Ygskd,
andYtskd all vanish.

For the proof, note that Eq.(3) follows immediately from
Eq. (1) and the transformation described above.

The computation ofSsnkd is much more efficient when
done via the symbol counts(and DFTs of lengthN/n) than
when done directly(with a DFT of lengthN).

The special caseN=3n turns out to be particularly inter-
esting in connection with DNA sequences. It leads to a very
fast algorithm for computingSsN/3d.

Theorem 2. Let N=3n. The spectral coefficientSsN/3d is
given by

SsN/3d = Fsyad + Fsycd + Fsygd + Fsytd, s4d

where

Fsyad = Fyas0d −
yas1d + yas2d

2
G2

+
3

4
fyas1d − yas2dg2 s5d

andFsycd, Fsygd, andFsytd are similarly defined.
To see that this is true, setk=1 andn=N/3 in Eq. (3).

This leads to

SsN/3d = uYas1du2 + uYcs1du2 + uYgs1du2 + uYts1du2. s6d

But

Yas1d = yas0d + yas1dw + yas2dw2,

wherew=e−i2p/3. An elementary computation confirms that
uYas1du2 is Fsyad. The three remaining cases are of course
similar, and the result follows.

Theorem 3. Let N=3n. The spectral coefficientSsN/3d is
a symmetric function of the symbol counts.

To simplify the notation, letx=yas0d, y=yas1d, and z
=yas2d. Note thatFsyad=x2+y2+z2−xy−xz−yz, and that this
is invariant under permutations of thex, y, and z. The re-
maining three cases are identical, and the theorem follows.

The number of arithmetic operations needed to evaluate
Eq. (4) is Os1d, that is, independent ofN. The computation
of the symbol counts can be done as the data are read, as it
merely requires incrementing the appropriate counters. The
overall result is a computational procedure that isOsNd, but
dominated by the time needed to read the data. Recall that
the computation of a fast Fourier transform of lengthN is an
OsN log Nd process, and that the computation of one spectral
coefficient requiresOsNd arithmetic operations.

Still in reference to the special caseN=3n, note that it
easily yields a necessary and sufficient condition for the van-
ishing of SsN/3d, contained in[7]. The following terminol-
ogy is convenient: a symbol count, such asya, is equidistrib-
utedwhen all theyasid are equal.

Theorem 4. Let N=3n. The spectral coefficientSsN/3d is
zero if and only if the symbol countsya, yc, yg, and yt are
equidistributed.

The simplest proof follows from Eq.(4). Its four terms are
similar to Eq. (5), which vanishes if and only ifyas1d
=yas2d and yas0d=fyas1d+yas2dg /2, that is, yas0d=yas1d
=yas2d.

Alternatively, we see from Eq.(6) that SsN/3d=0 if and
only if the DFTs of the symbol counts vanish fork=1. But

Yas1d = yas0d + yas1dw + yas2dw2,

wherew=e−i2p/3. Equidistribution impliesYas1d=0, since 1
+w+w2=0, becausew3=1. Conversely, assume thatYas1d
=0. An elementary computation shows thatyas0d=yas1d
=yas2d, as required. The remaining three DFTs can be
handled in a similar way.

The first part of this argument generalizes easily form not
necessarily equal to 3, since 1+w+w2+¯ +wm−1=0 for
wm=1. We thus see that the equidistribution of them symbol
counts implies the vanishing of the spectral coefficient
SsN/md.

The method used also characterizes the nucleotide distri-
butions that lead to a coefficientSsN/3d of a given size(not
necessarily zero). SinceSsN/3d is given in Eq.(1), we will
look at the componentuIaskdu2 only.

Theorem 5. Identify the symbol countsyas0d, yas1d, and
yas2d with three orthogonal axesx, y, z. Geometrically,
uIasN/3du2=v for some fixedv if and only if x, y, andz lie on
a cylinder with axisx=y=z and radiusr2=2v /3.

For the proof, rewriteFsyad as
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Fsx,y,zd =
1

2
fsx − yd2 + sy − zd2 + sx − zd2g,

or, in matrix form,

Fsx,y,zd = fxyzg3 1 − 1/2 − 1/2

− 1/2 1 − 1/2

− 1/2 − 1/2 1
43x

y

z
4 .

Upon reducing the quadratic form to diagonal form in the
new variablesX, Y, andZ, we get

3

2
sX2 + Y2d = v,

a circular cylinder with radiusÎ2v /3. An elementary com-
putation shows that the axis is indeed the linex=y=z, com-
pleting the proof.

The following case is also of interest, and is also an easy
consequence of Eq.(3) and Theorem 1.

Theorem 6. Let N=4n. The spectral coefficientSsN/4d is
given by

SsN/4d = Fsyad + Fsycd + Fsygd + Fsytd,

where

Fsyad = fyas0d − yas2dg2 + fyas1d − yas3dg2,

andFsycd, Fsygd, andFsytd are similarly defined.
For the proof, setk=1 andn=N/4 in Eq.(3), and evaluate

the squared modulus of the length 4 DFTs.
Theorem 7. Let N=4n. The spectral coefficientSsN/4d is

zero if and only if the symbol counts satisfyyas0d=yas2d and
yas1d=yas3d, and similarly foryc, yg, andyt.

The proof is obvious when we considerFsyad=0, say.
In [7], the caseSsN/4d=0, with yas0d=yas2dÞyas1d

=yas3d, is called a “hidden periodicity” of period 4(“hidden”
since it cannot be detected by spectral analysis). We note that
this is in fact a periodicity of period 2. Recall thatIasN/2d is
the difference between the total number of occurrences ofA
at the even and at the odd locations. In terms of the symbol
counts forN=4n, this means that

IasN/2d = fyas0d + yas2dg − fyas1d + yas3dg.

But since by hypothesisIasN/4d=0, the quantitiesyas0d
+yas2d and yas1d+yas3d will be different, andIasN/2dÞ0.
Beware that the statistical significance of the magnitude of a
given harmonic should be judged against that in a random
sequence, and that the periodicities should in general be
identified not with a single harmonic, but with the sum of the
magnitudes of sets of equidistant harmonics[11].

We now show that theN spectral coefficients of a sym-
bolic sequence are redundant(linearly dependent). More pre-
cisely, if there aren symbolsA in a sequence of total length
N, then theN elements ofIa can be determined from any
contiguous subset of cardinaln through a linear recursion.
Similar assertions are valid for the three other symbols, but
we consider the indicator sequenceia and its DFTIa only,
since the remaining three indicators can be handled in the
same way.

Theorem 8. Let ia be an indicator sequence of lengthN
with n ones, located ath j0, j1, . . . ,jn−1j. TheN spectral coef-
ficients Ia given by Eq.(2) satisfy the recursion

Ias, + nd = − o
k=0

n−1

hkIas, + kd,

where thehk are the coefficients of the polynomial

Pszd = o
k=0

n

hkz
k,

determined byhn=1 and

Pse−i2p jp/Nd = 0 s0 ø p , nd.

For the proof, consider then equations

Pse−i2p jp/Nd = o
k=0

n

hke
−i2p jpk/N = 0 s0 ø p , nd.

Multiplication of each of them by

ias j pde−i2p jp,/N,

followed by summation overp and an interchange of the
summation order, yields

o
k=0

n

hko
p=0

n−1

ias j pde−i2p jps,+kd/N = o
k=0

n

hko
p=0

N−1

iaspde−i2pps,+kd/N.

Combination of this with Eq.(2) shows that

o
k=0

n

hkIas, + kd = 0,

and sincehn=1 we finally get the result.
Note that, in general, anyN arbitrarily prescribed real or

complex numbers are the spectral coefficients of a certain
time series. Theorem 8 shows that this is not the case with
the spectral coefficients of a symbolic sequence. IfA appears
n times out ofN, then onlyn contiguous spectral coefficients
can be arbitrarily prescribed. The remainingN−n are deter-
mined by the recursion given.

III. CONCLUSION

We have clarified the connection between the size of the
spectral coefficientsSskd and the distribution of the nucle-
otides in certain equispaced subsequences. We gave a much
simpler way of obtaining necessary and sufficient conditions
for a specific spectral coefficient to have a prescribed size
(including zero), using a block sum transformation. The
method also leads to insight regarding what makes the spec-
tral coefficients large. We gave a computational procedure
for computing a selected coefficientSskd, such asSsN/3d,
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which has been used to tell coding regions from noncoding
ones. Finally, we showed that the spectral coefficients are
linearly dependent and therefore redundant: If there aren
symbols in a sequence of total lengthN, then theN elements
of Ia can be determined from, say,Ias0d ,Ias1d , . . . ,Iasn−1d,
through a linear recursion. This dependence could be used,

for example, to check for and even to correct errors in the
data corresponding to a given indicator sequence[12].
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